

SETOF *Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries*

Presentation of the analysis of soil degradation/soil erosion state and torrential floods in Serbia

Authors:

Ratko Ristić, Nada Dragović, Stanimir Kostadinov, Tijana Vulević, Mirjana Todosijević, Miodrag Zlatić, Radovan Savić, Atila Bezdan, Milica Vranšević, Slobodan Milutinović, Snežana Živković

Reference Number: 598403-EPP-1-2018-1-RS-EPPKA2-CBHE-JP

"This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein"

Soil Erosion map of Serbia

CATECOPY		EROSION	COEFICIENT	SPECIFIC SEDIMENT VIELD	SURFACE AREA		SEDIMENT YIELD	
	CATEGORI	INTENSITY	Z	m ^{3.} km ^{-2.} god ⁻¹	km ² %		m ^{3.} god ⁻¹	%
I	1	EXCESSIVE EROSION	1,41-1,50					
	2		1,21–1,40	≧3.000	1.027,00	1,16	2.165.643,30	5,81
	3		1,01–1,20					
II	4	INTENSIVE EROSION	0,86-1,00	1.200-3.000	11.657,83	13,21	14.169.528,52	38,03
	5		0,71-0,85					
	6	MEDIUM EROSION	0,56-0,70	800-1 200	11 108 08	12.67	8 988 449 04	24.13
	7		0,41-0,55	000 1.200	11.100,00	12,07	0.000.000	24,10
1) /	8	WEAK	0,31-0,40	400,000	10.045.07	10.10	0.041.404.46	01 50
IV	9	EROSION	0,21-0,30	400-800	16.045,87	10,10	0.041.404,40	21,09
V	10	VERY WEAK EROSION	0,11-0,20	100-400	36.407,35	41,19	3.890.949,42	10,44
	11		0,01-0,10					
	12	ACCUMULATION OF SEDIMENT			12.024,41	13,61		

.

Cotogory	Erosion Processes	Area		
Calegory	Intensity	km²	%	
I	Excessive Erosion	2,888.0	3.27	
II	Intensive Erosion	9,138.0	10.34	
III	Medium Erosion	19,386.0	21.94	
IV	Weak Erosion	43,914.0	49.78	
V	Very weak Erosion	13,035.0	14.75	
	Total	88,361.0	100	

Krupanj, 2014.

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Krupanj, 2014.

Uncontrolled forest harvesting

Consequence of mismanagement: appearance of furrows (Stara Planina, 2004., public forest)

of the European Union

Zlatibor mountain (Ljubiš, 2004)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Road erosion-the village of Kumane (1999)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

of the European Union

Bad farming (straight rows, down the slope)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Degraded pastures on the slopes of Stara Planina

The confluence of a stream into the Danube river

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Erasmus+ Programme of the European Union

Stara planina – July 2007.

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Stara planina – August 2007.

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the

Stara planina – September 2007.

SETOF Soil Erosion and TC Prevention: Curriculum D Universities of Western B

Co-funded by the nus+ Programme **European Union**

Erasmus+ Programme of the European Union

Ski run Konjarnik 1 before (2007) and after restoration (2014)

Effect of forest belts on intensty of wind erosion

(Savić, Letić, 2003)

Godine

2000

Drying (dieback) of Picea abies, mountain Golija, Serbia

Photo: prof. dr Branislav Milanović

Drying of Picea abies, mountain Golija, Serbia (67.000 m³)

Photo: prof. dr Branislav Milanović

Forest fires in Serbia

2012-2016: 316 events, 8075 ha

Causes:

- thunder, 15;
 man-induced, 158;
- ■unknown, 143

Krupanj, May 2014.

Tekija, September 2014.

- material damage and loss of human lives;
- material damage

Torrential floods have caused death of more than 130 people in the last 64 years and material damage estimated at more than 10 billion euros.

Spatial disposition of the most destructive torrential floods in Serbia from 1950 to 2018

Bad maintaining of regulated streams (Boleč, 2004)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the

Damaged check dam (Ibarska Gorge, 2011)

Illegal construction (Vladičin Han, 2011)

SETOF Soil Erosion and TOrrential Flood

An aerial photo of a part of Jelezovac watershed (2010)

Torrential floods-man made or natural hazards?

Natural conditions (out of man control)

Climate

-frequent appearance of intensive rain events; coincidence of snow melting and heavy rains...

Physical characteristics of the watersheds

-shape, slopes, density of drainage system...

Geology

Porosity of rocks; filtration velocity...

Torrential floods-man made or natural hazards?

Forestry

- clear cuttings on slopes and transport of timber...

-Agriculture

-straight row farming down the slope; overgrazing on slopes; usage of annual crops...

Urbanization

- increase of impervious surfaces (residental building; dense network of roads without structures for evacuation of surface water; unsustainable solutions in Erasmus+ Programme of the European Union

Stone masonry check-dam (2002)

SETOF Soil Erosion and TOrrential Flood

Gabion check-dam (2008)

Construction of the dry laid masonry check-dam (1946) SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Co-funded by the mus+ Programme European Union

Dry laid masonry check-dams

SETOF Soil Erosion and TOrrential Flood

The system of wattlings in the gully (1949)

.Щ.

Contour wattling (1949)

The system of dry laid masonry check-dams in the gully (1949)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

System of wattlings with stone fill (willow stakes and branches) - 2012

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Double wattling with stone fill (2012)

SETOF Soil Erosion and TOrrent Prevention: Curriculum Developn Universities of Western Balkan C

Afforestation with Robinia pseudoacacia (1953)

SETOF Soil Erosion and TOrrential Flood

Grassed terraces with ditches (1954)

SETOF Soil Erosion and TOrrential Flood

Paving of terrace with turf (1954)

Newly established grass cover in the orchard on terrace (1955)

Contour ditches in combination with fruit trees (1956)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Contour ditches with pools (1956)

Contour ditches with water in the pools, after heavy rain (1957)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Orchards on terraces (1995)

Changes of hydrological conditions

- Improvement of interception effect and water storage capacity of soil

- Balancing the runoff regime (increased low flow, reduced potential for fast surface runoff forming)

Afforestation of bare land (1953-2001)

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Afforestation of bare land (1953-2001) SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the

The effects of restoration

Water Resources Management Plan

- **90** mil. euros per year (both river and torrential floods) in next 10 years

In total: 900 mil. Euros

- **30** mil. euros per year for prevention of torrential floods (technical and soil engineering works) in next 10 years

In total: 300 mil. Euros

TORRENTIAL FLOOD DEFENCE ORGANIZATION SCHEME

CRITERIA FOR THE ANNOUNCEMENT OF THE FLOOD DEFENCE MEASURES

Criteria 1 - for the announcement of the regular measures for flood defence: the water level is 1 m above the bottom of the streambed

Criteria 2 - for the announcement of the emergency flood defence: the water level is less than 1 m lower than the streamside level

Criteria 3 - for the announcement of the state of emergency for flood defence: the water level exceeds the streamside level, which leads to the flooding of the reparian area

Estimated value for ETCW on the territory of municipality Lazarevac (382 km²)

11.460.000 € (30.000 €/km²)

Temperature and precipitation annual change for period 2071-2100 according to A2 scenario. Regional climatic model Djurdjevic (SEEVECCC), University of Belgrade

	24h max [mm]	72h max [mm]
1 (Planina)	218	428
2 (G.Crnuće)	150.2	300.2
3 (Razbojište)	190	350
4 (Joševa)	174.1	295.1
5 (Stepojevac)	185.1	293.5
6 (Kupinovo)	140	219.4
7 (Rudnik)	153	277
8 (G.Banjani)	153.3	365.9
9 (Pinosava)	129	217.4
10 (Koviona)	140.6	201.2
11 (B.Koviljača)	168.2	219.5
12 (S.Mitrovica)	132.1	203.7
13 (Brežđe)	148.5	251
14 (Majinović)	172.3	312.6
15 (Struganik)	158.1	269
16 (Rudovci)	160	241.3

SETOF Soil Erosion and TOrrential Flood Prevention: Curriculum Development at the Universities of Western Balkan Countries

Historical maximums of daily precipitation in the Belgrade region

Rain gauge station	Period of monitoring (year)	Daily maximum of precipitation until the end of 2013. [mm]	Daily maximum of precipitation recorded in May 2014. [mm]
Kalenić	1950-2014	<mark>130.6</mark> (1985)	124.2
Partizani	1949-2014	107.5	160
Stepojevac	1949-2014	133.6 (1974)	185.1
Sopot	1949-2014	94.2	124
Sibnica	1949-2014	83.6	182.5
Lazarevac	1941-2014	<mark>173.6</mark> (1996)	163.2
Velika Ivanča	1953-2014	75 (1999)	76
Dudovica	1950-2013	<mark>91</mark> (1996)	1
Rudovci	1951-2014	80.4	160

Anvelopes of specific maximal disharge

Co-funded by the Erasmus+ Programme of the European Union

- In the last 15 years, the frequency of occurrence and destructivity of torrential floods indicate that it is necessary to achieve a higher degree of coordination among different activities related to the problems of erosion control and torrential floods.
- In addition, it is necessary to provide stable sources of funding, with long-term investments as the only way to achieve prevention and minimize risks.

- Integrated ETC management in torrential watersheds encompasses technical works in a hydrographic network and soil bioengineering works, especially afforestation on the slopes, within a precisely defined social, administrative and spatial framework;
- The main goals are: to achieve maximum security for people and their property; to be complementary with other demands such as environmental protection, sustainable soil usage, drinking water supply, local economic development, biodiversity sustaining and mitigation of climate changes effects (UNFCCC, UNCCD, LDN, SDG).

Thank you for your attention!

Co-funded by the Erasmus+ Programme of the European Union

